Question : In $\triangle ABC$, $\angle B=60°$, $\angle C=40°$. AD is the bisector of $\angle A$ and AE is drawn perpendicular on BC from A. Then the measure of $\angle EAD$ is:
Option 1: $40^{\circ}$
Option 2: $30^{\circ}$
Option 3: $10^{\circ}$
Option 4: $80^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $10^{\circ}$
Solution : Let AD be the angle bisector and AE be the perpendicular. ⇒ $\angle$BAC + $\angle$ABC + $\angle$ACB = $180^{\circ}$ ⇒ $\angle$BAC + $60^{\circ}$ + $40^{\circ}$ = $180^{\circ}$ ⇒ $\angle$BAC = $180^{\circ}$ – $100^{\circ}$ = $80^{\circ}$ ⇒ $\angle$BAD = $\frac{80^{\circ}}{2}$ = $40^{\circ}$ In $\triangle$AEB, ⇒ $\angle$BAE + $\angle$ABE + $\angle$AEB = $180^{\circ}$ ⇒ $\angle$BAE + $60^{\circ}$ + $90^{\circ}$ = $180^{\circ}$ ⇒ $\angle$BAE = $180^{\circ}$ – $150^{\circ}$ = $30^{\circ}$ ⇒ $\angle$BAE = $30^{\circ}$ $\therefore$ $\angle$EAD = $\angle$BAD – $\angle$BAE = $40^{\circ}$ – $30^{\circ}$ = $10^{\circ}$ Hence, the correct answer is $10^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In $\triangle ABC, \angle B = 60^\circ$ and $\angle C = 40^\circ$, AD and AE are respectively the bisectors of $\angle A$ and perpendicular on BC. Find the measure of $\angle EAD$.
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : In $\triangle $ABC, AD$\perp$ BC and AD2 = BD × DC. The measure of $\angle$ BAC is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile