Question : In $\triangle ABC, \angle B=90^{\circ}$ and AB : BC = 1 : 2. The value of $\cos A+\tan C$ is:
Option 1: $\frac{5+\sqrt{5}}{2 \sqrt{5}}$
Option 2: $\frac{1+\sqrt{5}}{2 \sqrt{5}}$
Option 3: $\frac{2 \sqrt{5}}{2+\sqrt{5}}$
Option 4: $\frac{2+\sqrt{5}}{2 \sqrt{5}}$
Correct Answer: $\frac{2+\sqrt{5}}{2 \sqrt{5}}$
Solution : In $\triangle ABC, \angle B=90^{\circ}$ AB : BC = 1 : 2 ⇒ $\frac{\text{AB}}{\text{BC}} = \frac{1}{2}$ ⇒ $\frac{\text{AB}}{1} = \frac{\text{BC}}{2}=$ k ⇒ AB = k, BC = 2k Using the Pythagoras theorem, AC$^2$ = BC$^2$ + AB$^2$ = (2k)$^2$ + k$^2$ = 5k$^2$ So, AC = $\sqrt{5}$k By definition of trigonometric ratios, $\cos A = \frac{\text{AB}}{\text{AC}} = \frac{1}{\sqrt{5}}$ $\tan C = \frac{\text{AB}}{\text{BC}} = \frac{1}{2}$ ⇒ $\cos A+\tan C$ = $ \frac{1}{2}+ \frac{1}{\sqrt{5}}$ = $\frac{\sqrt{5}+2}{2 \sqrt{5}}$ Hence, the correct answer is $\frac{2+\sqrt{5}}{2 \sqrt{5}}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta-\tan \theta$ is:
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta+\tan \theta$ is:
Question : In a triangle ABC, if $\angle B=90^{\circ}, \angle C=45^{\circ}$ and AC = 4 cm, then the value of BC is:
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile