Question : In $\Delta\mathrm{ ABC,AD}$ and $\mathrm{AE}$ are bisectors of $\angle \mathrm{BAC}$ and $\angle \mathrm{BAD}$ respectively. If $\angle \mathrm{BAE}=30^{\circ}, \mathrm{AE}=9\;\mathrm{cm}$ and $\mathrm{EC}=15\;\mathrm{cm}$, what is the area (in$\;\mathrm{cm^2}$ ) of $\Delta \mathrm{CAE}$?
Option 1: $36$
Option 2: $54$
Option 3: $72$
Option 4: $216$
Correct Answer: $54$
Solution : In $\Delta \mathrm{ABC}$, Given that $\angle \mathrm{BAE} = 30^{\circ}$ ⇒ $\angle \mathrm{DAE = \angle BAE} = 30^{\circ}$ ($\mathrm{AE}$ is the bisector of $\angle \mathrm{BAD}$) Now, $\angle \mathrm{BAD = \angle BAE + \angle DAE}$ ⇒ $\angle \mathrm{BAD} = 30^{\circ} + 30^{\circ}$ ⇒ $\angle \mathrm{BAD} = 60^{\circ}$ Also, $\angle \mathrm{CAD = \angle BAD} = 60^{\circ}$ ( $ \mathrm{AD}$ is the bisector of $\angle \mathrm{BAC}$) ⇒ $\angle \mathrm{CAE = \angle CAD + \angle DAE} = 60^{\circ} + 30^{\circ}$ In $\Delta \mathrm{CAE}$, ⇒ $\angle \mathrm{ CAE }= 90^{\circ}$ $\angle \mathrm{CAE} = 90^{\circ}$ $ \mathrm{AE} = 9 \;\mathrm{cm}$ $ \mathrm{EC} = 15 \;\mathrm{cm}$ ⇒ $ \mathrm{AC} = \sqrt{15^2 - 9^2} = \sqrt{225 - 81} = 12\;\mathrm{cm}$ So, the area of $\Delta \mathrm{CAE}=\frac{1}{2} \times \mathrm{AE \times AC} = \frac{1}{2} \times 9 \times 12 = 54\;\mathrm{cm^2}$ Hence, the correct answer is $54$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Question : In $\Delta \mathrm{ABC}$, a line parallel to side $\mathrm{BC}$ cuts the sides $\mathrm{AB}$ and $\mathrm{AC}$ at points $\mathrm{D}$ and $\mathrm{E}$ respectively and also point $\mathrm{D}$ divides $\mathrm{AB}$ in the ratio of $\mathrm{1 : 4}$. If the area
Question : In a triangle ABC, if $\angle B=90^{\circ}, \angle C=45^{\circ}$ and AC = 4 cm, then the value of BC is:
Question : Internal bisectors of $\angle$ B and $\angle$ C of $\triangle$ ABC meet at O. If $\angle$ BAC = $80^{\circ}$, then the value of $\angle$ BOC is:
Question : If in $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{ACD}=125^{\circ}$, then $\angle \mathrm{BAC}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile