2 Views

Question : In $\Delta\mathrm{ ABC,AD}$ and $\mathrm{AE}$ are bisectors of $\angle \mathrm{BAC}$ and $\angle \mathrm{BAD}$ respectively. If $\angle \mathrm{BAE}=30^{\circ}, \mathrm{AE}=9\;\mathrm{cm}$ and $\mathrm{EC}=15\;\mathrm{cm}$, what is the area (in$\;\mathrm{cm^2}$ ) of $\Delta \mathrm{CAE}$?

Option 1: $36$

Option 2: $54$

Option 3: $72$

Option 4: $216$


Team Careers360 8th Jan, 2024
Answer (1)
Team Careers360 14th Jan, 2024

Correct Answer: $54$


Solution :
In $\Delta \mathrm{ABC}$,
Given that $\angle \mathrm{BAE} = 30^{\circ}$
⇒ $\angle \mathrm{DAE = \angle BAE} = 30^{\circ}$  ($\mathrm{AE}$ is the bisector of $\angle \mathrm{BAD}$)
Now, $\angle \mathrm{BAD = \angle BAE + \angle DAE}$
⇒ $\angle \mathrm{BAD} = 30^{\circ} + 30^{\circ}$
⇒ $\angle \mathrm{BAD} = 60^{\circ}$
Also, $\angle \mathrm{CAD = \angle BAD} = 60^{\circ}$  ( $ \mathrm{AD}$ is the bisector of $\angle \mathrm{BAC}$)
⇒ $\angle \mathrm{CAE = \angle CAD + \angle DAE} = 60^{\circ} + 30^{\circ}$
In $\Delta \mathrm{CAE}$,
⇒ $\angle \mathrm{ CAE }= 90^{\circ}$
$\angle \mathrm{CAE} = 90^{\circ}$
$ \mathrm{AE} = 9 \;\mathrm{cm}$
$ \mathrm{EC} = 15 \;\mathrm{cm}$
⇒ $ \mathrm{AC} = \sqrt{15^2 - 9^2} = \sqrt{225 - 81} = 12\;\mathrm{cm}$
So, the area of $\Delta \mathrm{CAE}=\frac{1}{2} \times \mathrm{AE \times AC} = \frac{1}{2} \times 9 \times 12 = 54\;\mathrm{cm^2}$
Hence, the correct answer is $54$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books