Question : In $\triangle \mathrm{CAB}, \angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. If $\mathrm{AC}=24 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$. then find the value of $AD$ (in cm).
Option 1: 9.23
Option 2: 8.23
Option 3: 7.14
Option 4: 10.23
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: 9.23
Solution :
Given, In $\triangle \mathrm{CAB}, \angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$.
$\mathrm{AC}=24 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$
Applying Pythagoras theorem,
$BC^2=AC^2+AB^2$
⇒ $BC^2 =24^2+10^2$
⇒ $BC = 26$ cm
Now, area of triangle = $\frac{1}{2}\times \text{base}\times \text{height}$
So, $\frac{1}{2}\times AC\times AB=\frac{1}{2}\times AD\times BC$
⇒ $24\times 10 = AD \times 26$
⇒ $AD = 9.23$ cm
Hence, the correct answer is 9.23 cm.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.