Question : In $\triangle \mathrm{CAB}, \angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. If $\mathrm{AC}=24 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$. then find the value of $AD$ (in cm).
Option 1: 9.23
Option 2: 8.23
Option 3: 7.14
Option 4: 10.23
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 9.23
Solution : Given, In $\triangle \mathrm{CAB}, \angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. $\mathrm{AC}=24 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ Applying Pythagoras theorem, $BC^2=AC^2+AB^2$ ⇒ $BC^2 =24^2+10^2$ ⇒ $BC = 26$ cm Now, area of triangle = $\frac{1}{2}\times \text{base}\times \text{height}$ So, $\frac{1}{2}\times AC\times AB=\frac{1}{2}\times AD\times BC$ ⇒ $24\times 10 = AD \times 26$ ⇒ $AD = 9.23$ cm Hence, the correct answer is 9.23 cm.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle \mathrm{ABC}$ is an isosceles triangle with $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}$. If $\mathrm{AC}=12 \mathrm{~cm}$, then the length of $\mathrm{BC}$ (in $\mathrm{cm}$) is equal to:
Question : It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : It is given that $\triangle \mathrm{PQR} \cong \triangle \mathrm{MNY}$ and $PQ=8\ \mathrm{cm}, \angle Q = 55°$ and $\angle P = 72°$. Which of the following is true?
Question : In $\triangle \mathrm{ABC}, \overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$, intersecting $\overline{\mathrm{AC}}$ at $\mathrm{D}$. Also, $\mathrm{BD}=12 \mathrm{~cm}$. If $\mathrm{m}(\overline{\mathrm{AD}})=6 \mathrm{~cm}$ and
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile