Question : In $\triangle X Y Z, \angle X=90^{\circ}, YZ=15 \mathrm{~cm}$, and $X Z=12 \mathrm{~cm}$. Then find $\cos Y$.
Option 1: $\frac{2}{5}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{3}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{5}$
Solution : $\cos Y = \frac{\text{Base}}{\text{Hypotenuse}}$ Applying Pythagoras theorem, we get, $\small{\text{Hypotenuse}}^2 = \text{Base}^2 + \text{Perpendicular}^2$ ⇒ $15^2=b^2 + 12^2$ [Let $b$ be the length of the base of the triangle] ⇒ $b^2 = 81$ ⇒ $b=9$ cm $\therefore\cos Y = \frac{9}{15}= \frac{3}{5}$ Hence, the correct answer is $\frac{3}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : In a $\triangle \mathrm{XYZ}, \mathrm{XO}$ is the median and $\mathrm{XO}=\frac{1}{2} \mathrm{YZ}$. If $\angle \mathrm{YXO}=30^{\circ}$, then what is the value of $\angle \mathrm{XYZ}$?
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If $\triangle A B C \sim \triangle F D E$ such that $A B=9 \mathrm{~cm}, A C=11 \mathrm{~cm}, D F=16 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$, then the length of $BC$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile