3 Views

Question : In $\triangle \mathrm{ABC}, \mathrm{BD} \perp \mathrm{AC}$ at D. E is a point on BC such that $\angle \mathrm{BEA}=x^{\circ}$. If $\angle \mathrm{EAC}=62^{\circ}$ and $\angle \mathrm{EBD}=60^{\circ}$, then the value of $x$ is:

Option 1: $92^\circ$

Option 2: $78^\circ$

Option 3: $76^\circ$

Option 4: $68^\circ$


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: $92^\circ$


Solution :
In $\triangle AOD$,
$\angle AOD + \angle ADO + \angle DAO = 180^\circ$
⇒ $\angle AOD + 90^\circ + 62^\circ = 180^\circ$
⇒ $\angle AOD = 180^\circ - 152^\circ$
⇒ $\angle AOD = 28^\circ$
$\because \angle AOD$ and $\angle EOB$ are vertical opposite angles,
$\angle AOD = \angle EOB = 28^\circ$
In $\triangle BOE$,
$\angle BEO + \angle EOB + \angle OBE = 180^\circ$
⇒ $x + 28^\circ + 60^\circ = 180^\circ$
⇒ $x = 180^\circ - 88^\circ$
⇒ $x = 92^\circ$
Hence, the correct answer is $92^\circ$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books