Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Option 1: 72°
Option 2: 78°
Option 3: 68°
Option 4: 76°
Correct Answer: 76°
Solution : $\angle B E A=x^{\circ}$ $\angle E A C=46^{\circ}$ $\angle E B D=60^{\circ}$ In $\triangle BDC$, $\angle DCB + \angle BDC + \angle CBD = 180^{\circ}$ ⇒ $\angle DCB +90^{\circ}+60^{\circ} = 180^{\circ}$ ⇒ $\angle DCB = 180^{\circ} - 90^{\circ}-60^{\circ}$ ⇒ $\angle DCB = 30^{\circ}$ In $\triangle AEC$, $\angle AEC + \angle ECA + \angle CAE = 180^{\circ}$ ⇒ $\angle AEC +30^{\circ}+46^{\circ} = 180^{\circ}$ ⇒ $\angle AEC = 180^{\circ} - 46^{\circ}-30^{\circ}$ ⇒ $\angle AEC = 104^{\circ}$ $\angle B E A+ \angle AEC = 180^{\circ}$ ⇒ $ x^{\circ} + 104^{\circ} = 180^{\circ}$ ⇒ $ x^{\circ} = 180^{\circ} - 104^{\circ} = 76^{\circ}$ Hence, the correct answer is $76^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle \mathrm{ABC}, \mathrm{BD} \perp \mathrm{AC}$ at D. E is a point on BC such that $\angle \mathrm{BEA}=x^{\circ}$. If $\angle \mathrm{EAC}=62^{\circ}$ and $\angle \mathrm{EBD}=60^{\circ}$, then the value of $x$ is:
Question : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$. If AB = 5 cm, $\angle$B = 40° and $\angle$A = 80°, then which of the following options is true?
Question : In $\triangle A B C $, AB and AC are produced to points D and E, respectively. If the bisectors of $\angle C B D$ and $\angle B C E$ meet at the point O, and $\angle B O C=57^{\circ}$, then $\angle A$ is equal to:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=68^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle B I C$ is:
Question : In a triangle$\frac{AB}{AC}=\frac{BD}{DC}$, $\angle$B = 70° and $\angle$C = 50°, then $\angle$BAD =?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile