Question : In $\triangle ABC$, D and E are points on the sides AB and AC, respectively, such that DE || BC. If AD = 5 cm, DB = 9 cm, AE = 4 cm, and BC = 15.4 cm, then the sum of the lengths of DE and EC (in cm) is:

Option 1: 11.6

Option 2: 10.8

Option 3: 13.4

Option 4: 12.7


Team Careers360 16th Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: 12.7


Solution : According to the question
DE || BC
using basic proportionality theorem
⇒ $\frac{AD}{DB}$ = $\frac{AE}{EC}$
⇒ $\frac{5}{9}$ = $\frac{4}{EC}$
⇒ EC = $\frac{36}{5}$ = 7.2 cm
Now, since the two triangles ADE and ABC are similar
⇒ $\frac{AD}{AB}$ = $\frac{DE}{BC}$
⇒ $\frac{5}{14}$ = $\frac{DE}{15.4}$
⇒ $DE$ = 5.5 cm
⇒ $DE + EC$ = 5.5 + 7.2 = 12.7 cm
Hence, the correct answer is 12.7.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books