Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Option 1: $75^{\circ}$
Option 2: $90^{\circ}$
Option 3: $80^{\circ}$
Option 4: $60^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $80^{\circ}$
Solution : Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. We know, the sum of the three angles of a triangle is $180^{\circ}$. According to the question, $5x-60^{\circ}+2x+40^{\circ}+3x-80^{\circ}=180^{\circ}$ $⇒10x=180^{\circ}+100^{\circ}$ $⇒x=\frac{280^{\circ}}{10}$ $\therefore x=28^{\circ}$ Now, $\angle \mathrm{A}$= $(5×28^{\circ})-60^{\circ} = 140^{\circ}-60^{\circ} = 80^{\circ}$ Hence, the correct answer is $80^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?
Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Question : In a $\triangle$ ABC, BC is extended to D and $\angle$ ACD = $120^{\circ}$. $\angle$ B = $\frac{1}{2}\angle$ A. Then $\angle$ A is:
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : The side $BC$ of a triangle $ABC$ is extended to $D$. If $\angle ACD = 120^{\circ}$ and $\angle ABC = \frac{1}{2} \angle CAB$, then the value of $\angle ABC$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile