Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=68^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle B I C$ is:
Option 1: 124°
Option 2: 68°
Option 3: 148°
Option 4: 54°
Correct Answer: 124°
Solution :
In $\triangle ABC$, $\angle A = 68^{\circ}$ $\angle BIC = 90^{\circ} + \frac{\angle A}{2}$ $= 90^{\circ} + \frac{68^{\circ}}{2}$ $= 90^{\circ} + 34^{\circ}$ $= 124^{\circ}$ Hence, the correct answer is $124^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=54^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle \mathrm{BIC}$ is:
Question : I is the incentre of $\triangle \mathrm{ABC}$ of $\angle \mathrm{A}=46°$, then $\angle \mathrm{BIC}=$?
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Question : 'I' is the incentre of $\triangle$ABC. If $\angle$BIC = 108$^\circ$, then $\angle$A = ?
Question : In $\triangle A B C, \mathrm{BD} \perp \mathrm{AC}$ at $\mathrm{D}$. $\mathrm{E}$ is a point on $\mathrm{BC}$ such that $\angle B E A=x^{\circ}$. If $\angle E A C=46^{\circ}$ and $\angle E B D=60^{\circ}$, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile