Question : In $\triangle \mathrm{ABC}$, $\angle \mathrm{ABC} = 90^{\circ}$, $\mathrm{BP}$ is drawn perpendicular to $\mathrm{AC}$. If $\angle \mathrm{BAP} = 50^{\circ},$ what is the value of $\angle \mathrm{PBC}?$
Option 1: $30^{\circ}$
Option 2: $45^{\circ}$
Option 3: $50^{\circ}$
Option 4: $60^{\circ}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $50^{\circ}$
Solution :
In right-angled $\triangle \mathrm{ABC}$, where $\angle \mathrm{ABC} = 90^{\circ}$, $\mathrm{BP}$ is drawn perpendicular to $\mathrm{AC}$. Given that $\angle \mathrm{BAP }= 50^{\circ}$ In $\triangle\mathrm{ ABC}$, $\mathrm{\angle C = 180^{\circ} - \angle A - \angle B = 180^{\circ} - 50^{\circ} - 90^{\circ} = 40^{\circ}}$ In $\mathrm{\triangle BPC}$, $\mathrm{\angle PBC +\angle BPC +\angle PCB =180^{\circ}}$ ⇒ $\mathrm{\angle PBC = 90^{\circ} - \angle PCB = 90^{\circ} - 40^{\circ} = 50^{\circ}}$ Hence, the correct answer is $50^{\circ}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : If it is given that for two right-angled triangles $\triangle$ABC and $\triangle$DFE, $\angle$A = 25°, $\angle$E = 25°, $\angle$B = $\angle$F = 90°, and AC = ED, then which one of the following is TRUE?
Question : $\triangle \mathrm{PQR}$ is an equilateral triangle inscribed in a circle. $\mathrm{S}$ is any point on the arc $\mathrm{QR}$. Find the measure of $\angle \mathrm{PSQ}$.
Question : In a $\triangle \mathrm{XYZ}, \mathrm{XO}$ is the median and $\mathrm{XO}=\frac{1}{2} \mathrm{YZ}$. If $\angle \mathrm{YXO}=30^{\circ}$, then what is the value of $\angle \mathrm{XYZ}$?
Question : $\angle A, \angle B$ and $\angle C$ are three angles of a triangle. If $\angle A- \angle B=15^{\circ}, \angle B - \angle C=30^{\circ}$, then $\angle A, \angle B$ and $\angle C$ are:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile