Question : In $\triangle \mathrm{STU}, \mathrm{SX}$ is the median on $\mathrm{TU}$. If $\mathrm{SX}=\mathrm{TX}$, then what is the value of $\angle \mathrm{TSU}$?
Option 1: 75°
Option 2: 45°
Option 3: 60°
Option 4: 90°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 90°
Solution : In $\triangle$STU, SX is the median. So, TX = XU (median property) SX = TX (given) So, $\triangle$STX is an isosceles triangle. Let $\angle$STX = $\angle$TSX = $\theta$ ⇒ $\angle$SXU = $2\theta$ (exterior angle) Similarly in $\triangle$SXU, SX = XU $\triangle$SXU is an isosceles triangle. Let $\angle$SUX = $\angle$USX = $\alpha$ ⇒ $\angle$SXT = $2\alpha$ (exterior angle) Now, $2\theta + 2\alpha = 180° $ (Linear pair) $⇒\theta + \alpha = 90°$ So, $\angle$TSU $= \theta +\alpha = 90°$ Hence, the correct answer is 90°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In $\triangle \mathrm{PQR}, \angle \mathrm{P}=46^{\circ}$ and $\angle \mathrm{R}=64^{\circ}$.If $\triangle \mathrm{PQR}$ is similar to $\triangle \mathrm{ABC}$ and in correspondence, then what is the value of $\angle \mathrm{B}$?
Question : O is the incentre of the $\triangle \mathrm{PQR}$. If $\angle \mathrm{POR}=120°$, then what is the $\triangle \mathrm{PQR}$?
Question : In a triangle $\triangle \mathrm{PQR}$, the bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{R}$ meet at a point $\mathrm{M}$ inside the triangle. If the measurement of $\angle P M R=127^{\circ}$, then the measurement of $\angle Q$ is:
Question : M is the incentre of the $\triangle $XYZ. If $\angle $YXZ + $\angle $YMZ = 150°, then what is the value of $\angle $YXZ?
Question : In $\triangle$PQR, the angle bisector of $\angle$P intersects QR at M. If PQ = PR, then what is the value of $\angle$PMQ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile