Question : In $\triangle ABC$, right angled at B, if $\tan A=\frac{1}{2}$, then the value of $\frac{\sin A(\cos C+\cos A)}{\cos C(\sin C-\sin A)}$ is:
Option 1: $2$
Option 2: $1$
Option 3: $3$
Option 4: $2\sqrt5$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3$
Solution : $\tan A=\frac{1}{2}$ $⇒\frac{BC}{AB}=\frac{1}{2}$ Let $BC=x$ units, then $AB=2x$ units Using Pythagoras theorem, $⇒AC^2=AB^2+BC^2$ $⇒AC^2=x^2+(2x)^2$ $⇒AC^2=5x^2$ $⇒AC =x\sqrt5 $ units Now, we have $\triangle ABC$ right-angled at B, with $\tan A=\frac{1}{2}$, and we've found that $BC=x$, $AB=2x$, and $AC=x\sqrt{5}$. $⇒\sin A = \frac{BC}{AC} = \frac{x}{x\sqrt{5}} = \frac{1}{\sqrt{5}}$ $⇒\cos A = \frac{AB}{AC} = \frac{2x}{x\sqrt{5}} = \frac{2}{\sqrt{5}}$ $⇒\sin C = \frac{AB}{AC} = \frac{2x}{x\sqrt{5}} = \frac{2}{\sqrt{5}}$ $⇒\cos C = \frac{BC}{AC} = \frac{x}{x\sqrt{5}} = \frac{1}{\sqrt{5}}$ Substituting these values into the given expression, we get: $⇒\frac{\sin A(\cos C+\cos A)}{\cos C(\sin C-\sin A)} = \frac{\frac{1}{\sqrt{5}}(\frac{1}{\sqrt{5}}+\frac{2}{\sqrt{5}})}{\frac{1}{\sqrt{5}}(\frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}})} = \frac{\frac{3}{5}}{\frac{1}{5}} = 3$ Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\triangle ABC$ is a right triangle. If $\angle B=90^{\circ}$ and $\tan A=\frac{1}{\sqrt{2}}$, then the value of $\sin A \cos C + \cos A \sin C$ is:
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at B and $\tan \mathrm{A}=\frac{3}{4}$, then $\sin A + \sin B + \sin C$ will be equal to:
Question : ABC is a right-angled triangle with $\angle A=90°$. Then the value of $\cos^{2}A+\cos^{2}B+cos^{2}C$ is:
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at $\mathrm{B}$. If $\tan \mathrm{A}=\frac{5}{12}$, then $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ will be equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile