Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Option 1: $\frac{\sqrt{3}}{2}$
Option 2: $\frac{\sqrt{3}}{4}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\sqrt{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{3}}{2}$
Solution : Given: In $\triangle {XYZ}$, right-angled at $Y$. We know that the sum of all the angles in a triangle is 180°. $\sin X = \frac{1}{2}$ ⇒ $\sin X = \sin{30°}$ So, $\angle X = 30°$ Then $\angle Z = 60°$, because $\angle Y + \angle X + \angle Z = 180°$ Then, $\cos X \cos Z + \sin X \sin Z$ $=\cos 30° \cos 60° + \sin 30° \sin 60°$ $=\frac{\sqrt{3}}{2} × \frac{1}{2} + \frac{1}{2} × \frac{\sqrt{3}}{2}$ $ = \frac{\sqrt{3}}{2}$ Hence, the correct answer is $\frac{\sqrt{3}}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : x, y, and z are the sides of a triangle. If z is the largest side and x2 + y2 > z2, then the triangle is a:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile