2 Views

Question : In the given figure, $PQRS$ is a rectangle and a semicircle with $SR$ as the diameter is drawn. A circle is drawn as shown in the figure. If $QR=7\;\mathrm{cm}$, then what is the radius (in $\mathrm{cm}$) of the small circle?

Option 1: $21+14\sqrt{2}$

Option 2: $21-14\sqrt{2}$

Option 3: both $21+14\sqrt{2}$ and $21-14\sqrt{2}$

Option 4: None of these


Team Careers360 24th Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $21-14\sqrt{2}$


Solution :

We have $PQRS$ as a rectangle and a semicircle with $SR$ as diameter and $QR = 7\;\mathrm{cm}$.
Construction: Draw a line from $Q$ on line $ST$ (where $T$ is the centre of the semicircle) and pass through point $U$ (where $U$ is the point of contact and $O$ is the centre of the circle).
Now, $RT$ and $QR$ are the radius of the bigger circle and equal to $7\;\mathrm{cm}$.
In $\triangle QRT$,
$QT^2=QR^2+TR^2$
$QT^2 = 49 + 49$
$ QT = 7\sqrt{2}$ ____(i)
Let the radius of the smaller circle $=r\;\mathrm{cm}$
$QO = r\sqrt{2}$
From the figure,
$QT = TU + UO + OQ$
$QT = 7 + r + r\sqrt{2}$ ____(ii)
From equation (i) and (ii)
$7\sqrt{2} = 7 + r (\sqrt{2} + 1)$
⇒ $r = \frac{7 (\sqrt{2} - 1)}{(\sqrt{2} + 1)}$
⇒ $r = 7 (3 - 2\sqrt{2})$
Hence, the correct answer is $21 - 14\sqrt{2}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books