Question : In the given figure, $ABC$ is an isosceles triangle with $\mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AB}=\mathrm{AC}$ $=5 \mathrm{~cm}$. The value of $\tan \mathrm{C}-\cot \mathrm{B}$ is______.
Option 1: $-\frac{5}{12}$
Option 2: $-\frac{7}{12}$
Option 3: $\frac{7}{12}$
Option 4: $\frac{5}{12}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{7}{12}$
Solution : Given, $ABC$ is an isosceles triangle with $\mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{AB}=\mathrm{AC}$ $=5 \mathrm{~cm}$ In $\Delta ABC$, $AD$ is the perpendicular bisector. $BD=DC=\frac{BC}2$ $⇒BD=DC = \frac{8}2 = 4$ In $\Delta ADC$, by Pythagoras Theorem, $AC^2 = DC^2 + AD^2$ $⇒5^2 = 4^2 + AD^2$ $⇒AD^2 = 9$ $\therefore AD = 3$ cm Now, in $\Delta ADC$, $\tan C = \frac{AD}{DC}$ $⇒\tan C = \frac{3}{4}$ Now, in $\Delta ADB$, $\cot B = \frac{BD}{AD}$ $⇒\cot B = \frac{4}{3}$ So, $\tan C - \cot B = \frac{3}{4} - \frac{4}{3}= \frac{9-16}{12}= -\frac{7}{12}$ Hence, the correct answer is $-\frac{7}{12}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In the triangle $\mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm},\mathrm{AC}=10 \mathrm{~cm}$, and $\angle \mathrm{BAC}=60^{\circ}$. What is the value of the length of the side $\mathrm{BC}$?
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : If $\triangle A B C \sim \triangle F D E$ such that $A B=9 \mathrm{~cm}, A C=11 \mathrm{~cm}, D F=16 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$, then the length of $BC$ is:
Question : In $\triangle \text{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{\text{AD}}{\text{DB}}=\frac{4}{5}$. If $\mathrm{DE}=12 \mathrm{~cm}$, find the length of $\mathrm{BC}$.
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at $\mathrm{B}$. If $\tan \mathrm{A}=\frac{5}{12}$, then $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ will be equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile