Question : In the given figure, O is the centre of the circle, OQ is perpendicular to RS, and $\angle SRT=30^{\circ}$. If $RS=10\sqrt{2}$ units, what is the value of PR2?
Option 1: $200\left ( 1+\sqrt{3} \right )$ sq. units
Option 2: $300\left ( 2+\sqrt{3} \right )$ sq. units
Option 3: $200\left ( 2+\sqrt{3} \right )$ sq. units
Option 4: $100\left ( 3+2\sqrt{3} \right )$ sq. units
Correct Answer: $200\left ( 2+\sqrt{3} \right )$ sq. units
Solution : Here RQ = QS = $5\sqrt{2}$ $\angle$SRT = 30° In $\triangle$ROQ, $\angle$ORQ = 90° – 30° = 60° ⇒ OR $=\frac{5\sqrt{2}}{\cos 60º} = 10\sqrt{2} = OP$ OQ $=5\sqrt{2} \times \tan 60º = 5\sqrt{6}$ PQ = OP + OQ = $10\sqrt{2} + 5\sqrt{6}$ In $\triangle$PQR, PR 2 = RQ 2 + PQ 2 = $(5\sqrt{2})^2 + (10\sqrt{2} + 5\sqrt{6})^2$ = $50 + 200 + 150 + 100\sqrt{12}$ = $400 + 200\sqrt{3} = 200(2 + \sqrt{3})$ sq. units Hence, the correct answer is $200\left ( 2+\sqrt{3} \right )$ sq. units.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Three circles of equal radius '$a$' cm touch each other. The area of the shaded region is:
Question : If $k\left(\tan 45^{\circ} \sin 60^{\circ}\right)=\cos 60^{\circ} \cot 30^{\circ}$, then the value of k is:
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : The value of $\tan ^2 48^{\circ}-\operatorname{cosec}^2 42^{\circ}+\operatorname{cosec}\left(67^{\circ}+\theta\right)-\sec \left(23^{\circ}-\theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile