Question : In the given $\triangle{ABC}, DE \parallel BC$. If $BC=8 \text{ cm}$, $DE=6 \text{ cm}$, and the area of $\triangle ADE=90 \text{ cm}^2$, what is the area of $\triangle ABC$?

Option 1: 140

Option 2: 120

Option 3: 160

Option 4: 180


Team Careers360 7th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: 160


Solution :
Given: $DE\parallel BC$ and $DE = 6\text{ cm}$, $BC = 8\text{ cm}$, and area of ($\triangle ADE) = 90 \text{ cm}^2$
Since $DE\parallel BC$, $\triangle ADE$ and $\triangle ABC$ are similar.
So, $\frac{(Area \ of \ \triangle ADE)}{(Area \ of \  \triangle ABC)} = \frac{DE^2}{BC^2}$
$⇒\frac{90}{(Area \ of \ \triangle ABC)} = \frac{6^2}{8^2}$
$⇒\frac{90}{Area\ of \ (\triangle ABC)}=\frac{36}{64}$
⇒ Area of $(\triangle ABC)=160 \text{ cm}^2$
Hence, the correct answer is 160.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books