Question : In the triangle $\mathrm{ABC}, \mathrm{AB}=12 \mathrm{~cm},\mathrm{AC}=10 \mathrm{~cm}$, and $\angle \mathrm{BAC}=60^{\circ}$. What is the value of the length of the side $\mathrm{BC}$?
Option 1: 10 cm
Option 2: 7.13 cm
Option 3: 13.20 cm
Option 4: 11.13 cm
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 11.13 cm
Solution : Given, $\mathrm{AB}=12 \mathrm{~cm},\mathrm{AC}=10 \mathrm{~cm}$, and $\angle \mathrm{BAC}=60^{\circ}$ According to cosine law, $\mathrm{BC}^2=\mathrm{AB}^2+\mathrm{AC}^2-2(\mathrm{AB})(\mathrm{AC})\cos 60^\circ$ ⇒ $\mathrm{BC}^2=12^2+10^2-2\times12\times10\times0.5$ $\therefore \mathrm{BC}=11.13\mathrm{~cm}$ Hence, the correct answer is 11.13 cm.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Question : $ABC$ is a triangle and $D$ is a point on the side $BC$. If $BC = 16\mathrm{~cm}$, $BD = 11 \mathrm{~cm}$ and $\angle ADC = \angle BAC$, then the length of $AC$ is equal to:
Question : In $\triangle \mathrm{ABC}$, $\angle \mathrm{ABC} = 90^{\circ}$, $\mathrm{BP}$ is drawn perpendicular to $\mathrm{AC}$. If $\angle \mathrm{BAP} = 50^{\circ},$ what is the value of $\angle \mathrm{PBC}?$
Question : $\triangle ABC$ and $\triangle PQR$ are two triangles. AB = PQ = 6 cm, BC = QR =10 cm, and AC = PR = 8 cm. If $\angle ABC = x$, then what is the value of $\angle PRQ$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile