2 Views

Question : In trapezium $ABCD$, $AB \parallel CD$ and $AB = 2CD$. Its diagonals intersect at $O$. If the area of $\triangle AOB=84\;\mathrm{cm^2}$ then the area of $\triangle COD$ is equal to:

Option 1: 72 cm2

Option 2: 21 cm2

Option 3: 42 cm2

Option 4: 26 cm2


Team Careers360 13th Jan, 2024
Answer (1)
Team Careers360 20th Jan, 2024

Correct Answer: 21 cm 2


Solution :

In trapezium $ABCD$, $AB \parallel CD, AB = 2CD$ and area of $\Delta AOB=84\;\mathrm{cm^2}$.
In $\triangle AOB$ and $\triangle COD$,
$\angle AOB=\angle COD$ (Vertically opposite angles)
$\angle ABO=\angle CDO$ (Alternate angles)
$\angle BAO=\angle DCO$ (Alternate angles)
So, $\triangle AOB\sim\triangle COD$
Using the theorem, the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\frac{\operatorname{Area of }\Delta AOB}{\operatorname{Area of }\Delta COD}=\frac{AB^2}{CD^2}$
⇒ $\frac{84}{\operatorname{Area of }\Delta COD}=\frac{4CD^2}{CD^2}=4$
⇒ $\operatorname{Area of }\triangle COD=21$ cm 2
Hence, the correct answer is 21 cm 2 .

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books