1 View

Question : In triangle ABC, DE $\parallel$ BC where D is a point on AB and E is a point on AC. DE divides the area of $\Delta ABC$ into two equal parts. Then BD : AB is equal to:

Option 1: $\sqrt{2}:(\sqrt{2}+1)$

Option 2: $\sqrt{2}:(\sqrt{2}-1)$

Option 3: $(\sqrt{2}-1): \sqrt{2}$

Option 4: $(\sqrt{2}+1): \sqrt{2}$


Team Careers360 4th Jan, 2024
Answer (1)
Team Careers360 15th Jan, 2024

Correct Answer: $(\sqrt{2}-1): \sqrt{2}$


Solution :

Given: DE $\parallel$ BC
According to the question,
$area(\triangle ADE)=area(\operatorname{trapezium BCED})$
⇒ $area(\triangle ADE)+area(\triangle ADE)=area(\operatorname{trapezium BCED})+area(\triangle ADE)$
⇒$2area(\triangle ADE)=area(\triangle ABC)$.............(i)
From the figure,
$BD=AB-AD$
⇒ $AD=AB-BD$..................(ii)
In $\triangle ADE$ and $\triangle ABC$
$\angle D=\angle D$ (corresponding angle)
$\angle A=\angle A$ (common angle)
So, $\triangle ADE\sim\triangle ABC$
⇒ $\frac{area(\triangle ADE)}{area(\triangle ABC)}=\frac{AD^2}{AB^2}$
From equation (i)
$\frac{area(\triangle ADE)}{2area(\triangle ADE)}=\frac{AD^2}{AB^2}$
⇒ $\frac{AD^2}{AB^2}=\frac{1}{2}$
⇒ $\frac{AD}{AB}=\frac{1}{\sqrt2}$
⇒ $AB=\sqrt2AD$
From equation (ii)
$AB=\sqrt2(AB-BD)$
⇒ $\sqrt2BD=\sqrt2AB-AB$
⇒ $\sqrt2BD=AB(\sqrt2-1)$
⇒ $\frac{BD}{AB}=\frac{\sqrt2-1}{\sqrt2}$
Hence, the correct answer is $(\sqrt2-1):\sqrt2$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books