5 Views

Question : In triangle PQR, the sides PQ and PR are produced to A and B respectively. The bisectors of $\angle {AQR}$ and $\angle {BRQ}$ intersect at point O. If $\angle {QOR} = 50^{\circ}$ what is the value of $\angle {QPR}$ ?

Option 1: $50^{\circ}$

Option 2: $60^{\circ}$

Option 3: $80^{\circ}$

Option 4: $100^{\circ}$


Team Careers360 22nd Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $80^{\circ}$


Solution :

In triangle PQR, the bisectors of $\angle {AQR}$ and $\angle {BRQ}$ intersect at point O. According to the Angle bisector theorem, the angles formed at the incenter by the angle bisectors are half the sum of the other two angles of the triangle.
$\angle {QOR}= \frac{180^{\circ} - \angle {QPR}}{2}$
⇒ $50^{\circ}= \frac{180^{\circ} - \angle{QPR}}{2}$
⇒ $\angle {QPR} = 180^{\circ} - 2 \times 50^{\circ} = 80^{\circ}$
Hence, the correct answer is $ 80^{\circ}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books