4 Views

Question : Internal bisectors of $\angle$ B and $\angle$ C of $\triangle$ ABC meet at O. If $\angle$ BAC = $80^{\circ}$, then the value of $\angle$ BOC is:

Option 1: $120^{\circ}$

Option 2: $140^{\circ}$

Option 3: $110^{\circ}$

Option 4: $130^{\circ}$


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: $130^{\circ}$


Solution :

OB and OC are the angle bisectors of $\angle B$ and $\angle C$.
In $\triangle OBC$,
$\angle OBC + \angle BCO + \angle COB = 180^{\circ}$
$⇒\frac{1}{2} \angle B + \frac{1}{2} \angle C + \angle COB = 180^{\circ}$
$⇒\frac{1}{2} (\angle B+\angle C) + \angle COB = 180^{\circ}$
$⇒\frac{1}{2} (180^{\circ}-\angle A) + \angle COB = 180^{\circ}$
$⇒\angle COB = 180^{\circ} – (\frac{1}{2} (180^{\circ}-80^{\circ}))= 180^{\circ}$ – $50^{\circ}= 130^{\circ}$
Hence, the correct answer is $130^{\circ}$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books