Question : Internal bisectors of $\angle$ B and $\angle$ C of $\triangle$ ABC meet at O. If $\angle$ BAC = $80^{\circ}$, then the value of $\angle$ BOC is:
Option 1: $120^{\circ}$
Option 2: $140^{\circ}$
Option 3: $110^{\circ}$
Option 4: $130^{\circ}$
Correct Answer: $130^{\circ}$
Solution : OB and OC are the angle bisectors of $\angle B$ and $\angle C$. In $\triangle OBC$, $\angle OBC + \angle BCO + \angle COB = 180^{\circ}$ $⇒\frac{1}{2} \angle B + \frac{1}{2} \angle C + \angle COB = 180^{\circ}$ $⇒\frac{1}{2} (\angle B+\angle C) + \angle COB = 180^{\circ}$ $⇒\frac{1}{2} (180^{\circ}-\angle A) + \angle COB = 180^{\circ}$ $⇒\angle COB = 180^{\circ} – (\frac{1}{2} (180^{\circ}-80^{\circ}))= 180^{\circ}$ – $50^{\circ}= 130^{\circ}$ Hence, the correct answer is $130^{\circ}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Question : In $\triangle$ABC, $\angle$A = 66°. AB and AC are produced at points D and E, respectively. If the bisectors of $\angle$CBD and $\angle$BCE meet at the point O, then $\angle$BOC is equal to:
Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Question : In a $\triangle $ABC, the bisector of $\angle $B and $\angle $C meet at O in the triangle. If $\angle $BOC = 134º, then the measure of $\angle $A is:
Question : In a $\triangle ABC$, the bisectors of $\angle$ABC and $\angle$ACB intersect each other at point O. If the $\angle$BOC is 125°, then the $\angle$BAC is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile