Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at B and $\tan \mathrm{A}=\frac{3}{4}$, then $\sin A + \sin B + \sin C$ will be equal to:
Option 1: $2 \frac{4}{5}$
Option 2: $2 \frac{2}{5}$
Option 3: $3 \frac{1}{5}$
Option 4: $1 \frac{1}{5}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2 \frac{2}{5}$
Solution : In $\triangle \mathrm{ABC}$, $\tan \mathrm{A}=\frac{3}{4}$ Let the length of sides $BC$ and $BA$ be $3k$ and $4k$. By Pythagoras theorem, $AC^2=BC^2+BA^2$ ⇒ $AC^2=3k^2+4k^2$ ⇒ $AC^2=25k^2$ ⇒ $AC=5k$ ⇒ $\sin A = \frac{BC}{AC}$ ⇒ $\sin A = \frac{3k}{5k}$ ⇒ $\sin A = \frac{3}{5}$ ⇒ $\sin C = \frac{BA}{AC}$ ⇒ $\sin A = \frac{4k}{5k}$ ⇒ $\sin A = \frac{4}{5}$ So, $\sin A+ \sin B +\sin C= \frac{3}{5}+1+\frac{4}{5}= \frac{12}{5}=2\frac{2}{5}$ Hence, the correct answer is $2\frac{2}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at $\mathrm{B}$. If $\tan \mathrm{A}=\frac{5}{12}$, then $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ will be equal to:
Question : $\triangle ABC$ is a right triangle. If $\angle B=90^{\circ}$ and $\tan A=\frac{1}{\sqrt{2}}$, then the value of $\sin A \cos C + \cos A \sin C$ is:
Question : In $\triangle ABC$, right angled at B, if $\tan A=\frac{1}{2}$, then the value of $\frac{\sin A(\cos C+\cos A)}{\cos C(\sin C-\sin A)}$ is:
Question : If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar when:
Question : If it is given that for two right-angled triangles $\triangle$ABC and $\triangle$DFE, $\angle$A = 25°, $\angle$E = 25°, $\angle$B = $\angle$F = 90°, and AC = ED, then which one of the following is TRUE?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile