Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at $\mathrm{B}$. If $\tan \mathrm{A}=\frac{5}{12}$, then $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ will be equal to:
Option 1: $1 \frac{5}{13}$
Option 2: $2 \frac{4}{13}$
Option 3: $3 \frac{1}{13}$
Option 4: $2 \frac{1}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2 \frac{4}{13}$
Solution : Given, $\tan\mathrm{A}=\frac{5}{12}$ Using Pythagoras theorem, $AC^2 = AB^2+BC^2$ ⇒ $AC^2 = 5^2 + 12^2$ ⇒ $AC^2 = 25 + 144$ ⇒ $AC^2 = 169$ ⇒ $AC = 13$ units ⇒ $\sin \mathrm{A} = \frac{5}{13},$ $\sin \mathrm{B} = 1$ and $\sin\mathrm{C} = \frac{12}{13}$ So, $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ = $\frac{5}{13}+1+\frac{12}{13}$ = $\frac{12+13+5}{13}=\frac{30}{13}=2\frac{4}{13}$ Hence, the correct answer is $2\frac{4}{13}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\triangle \mathrm{ABC}$ is a right-angle triangle at B and $\tan \mathrm{A}=\frac{3}{4}$, then $\sin A + \sin B + \sin C$ will be equal to:
Question : $\triangle ABC$ is a right triangle. If $\angle B=90^{\circ}$ and $\tan A=\frac{1}{\sqrt{2}}$, then the value of $\sin A \cos C + \cos A \sin C$ is:
Question : If $\sec A+\tan A=5$, then $\sin A$ is equal to:
Question : In $\triangle ABC$, right angled at B, if $\tan A=\frac{1}{2}$, then the value of $\frac{\sin A(\cos C+\cos A)}{\cos C(\sin C-\sin A)}$ is:
Question : If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar when:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile