Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Option 1: $\frac{5}{3}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{4}{3}$
Option 4: $\frac{5}{4}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{3}$
Solution : Given, AB = 25 cm and BC = 20 cm Using the Pythagoras theorem, $AB^2=BC^2+AC^2$ ⇒ $AC^2=25^2-20^2$ ⇒ $AC^2=625-400$ ⇒ $AC^2=225$ ⇒ $AC = 15$ cm We know, $\sec A =\frac{\text{Hypotenuse}}{\text{Base}}$ So, $\sec A = \frac{AB}{AC} = \frac{25}{15}= \frac{5}{3}$ Hence, the correct answer is $\frac{5}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle\mathrm{ABC}$ is a right angled triangle. $\angle \mathrm{A}=90°$, $AB = 4$ cm, and $BC = 5$ cm. What is the value of $\cos B + \cot C$?
Question : $\triangle ABC$ is a right angled triangle, $\angle B$ = 90°, $AB$ = 12 cm, $BC$ = 5 cm. What is the value of $\cos A + \sin C$?
Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Question : $\triangle \mathrm{EFG}$ is a right angled triangle. $\angle \mathrm{F}=90°$, $\mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{FG}=15 \mathrm{~cm}$. What is the value of cosec $\mathrm{G}$?
Question : $\triangle $KLM is a right-angled triangle. $\angle$M = 90$^{\circ}$, KM = 12 cm and LM = 5 cm. What is the value of $\sec$ L?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile