Question : $\triangle \mathrm{EFG}$ is a right angled triangle. $\angle \mathrm{F}=90°$, $\mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{FG}=15 \mathrm{~cm}$. What is the value of cosec $\mathrm{G}$?
Option 1: $\frac{\sqrt{13}}{2}$
Option 2: $\frac{2}{\sqrt{3}}$
Option 3: $\frac{\sqrt{13}}{10}$
Option 4: $\frac{10}{\sqrt{3}}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{13}}{2}$
Solution : $\angle$F = 90°, EF = 10 cm, FG = 15 cm By Pythagoras theorem, Hypotenuse 2 = Base 2 + Perpendicular 2 EG 2 = EF 2 + FG 2 ⇒ EG 2 = 10 2 + 15 2 ⇒ EG 2 = 100 + 225 ⇒ EG = $\sqrt{325}$ cm cosec $\theta$ = $\frac{\text{Hypotenuse}}{\text{Perpendicular}}$ ⇒ cosec G = $\frac{\sqrt{325}}{10} = \frac{\sqrt{25 \times 13}}{10} = \frac{5\sqrt{13}}{10}$ ⇒ $\frac{\sqrt{13}}{2}$ Hence, the correct answer is $\frac{\sqrt{13}}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle ABC$ is a right angled triangle, $\angle B$ = 90°, $AB$ = 12 cm, $BC$ = 5 cm. What is the value of $\cos A + \sin C$?
Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Question : $\triangle\mathrm{ABC}$ is a right angled triangle. $\angle \mathrm{A}=90°$, $AB = 4$ cm, and $BC = 5$ cm. What is the value of $\cos B + \cot C$?
Question : The sides of a triangle are 9 cm, 6 cm, and 5 cm. What is the value of the circumradius of this triangle?
Question : $\triangle PQR$ is a right-angled triangle. $\angle Q = 90^\circ$, PQ = 12 cm, and QR = 5 cm. What is the value of $\operatorname{cosec}P+\sec R$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile