Question : $\triangle\mathrm{ABC}$ is a right angled triangle. $\angle \mathrm{A}=90°$, $AB = 4$ cm, and $BC = 5$ cm. What is the value of $\cos B + \cot C$?
Option 1: $\frac{17}{20}$
Option 2: $\frac{29}{20}$
Option 3: $\frac{23}{20}$
Option 4: $\frac{31}{20}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{31}{20}$
Solution : Using the Pythagoras theorem we get, $AC^2=BC^2-AB^2$ ⇒ $AC=\sqrt{5^2-4^2}$ ⇒ $AC=3$ cm Now, $\cos B=\frac{4}{5}$ and $\cot C=\frac{3}{4}$ So, $\cos B + \cot C=\frac{4}{5}+\frac{3}{4}=\frac{31}{20}$ Hence, the correct answer is $\frac{31}{20}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Question : $\triangle ABC$ is a right angled triangle, $\angle B$ = 90°, $AB$ = 12 cm, $BC$ = 5 cm. What is the value of $\cos A + \sin C$?
Question : $\triangle \mathrm{EFG}$ is a right angled triangle. $\angle \mathrm{F}=90°$, $\mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{FG}=15 \mathrm{~cm}$. What is the value of cosec $\mathrm{G}$?
Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Question : In $\triangle \mathrm{PQR}, \angle \mathrm{P}=46^{\circ}$ and $\angle \mathrm{R}=64^{\circ}$.If $\triangle \mathrm{PQR}$ is similar to $\triangle \mathrm{ABC}$ and in correspondence, then what is the value of $\angle \mathrm{B}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile