7 Views

Question : $PQR$ is a triangle, whose area is 180 cm2. $S$ is a point on side $QR$ such that $PS$ is the angle bisector of $\angle QPR$. If $PQ: PR = 2:3$, then what is the area (in cm2) of triangle $PSR$?

Option 1: 90

Option 2: 108

Option 3: 144

Option 4: 72


Team Careers360 21st Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: 108


Solution :

Given: $ar(\triangle PQR)=180 \, \operatorname{ cm^2}$. S is a point on side $QR$ such that $PS$ is the angle bisector of $\angle QPR$ and $PQ: PR = 2:3$.
$\angle QPS=\angle RPS$ (because $PS$ is the angle bisector of $\angle QPR$)
By the Angle bisector theorem,
⇒ $\frac{PQ}{PR}=\frac{QS}{SR}$
⇒ $\frac{2}{3}=\frac{QS}{SR}$
⇒ $\frac{QS}{SR}=\frac{ar(\triangle PQS)}{ar(\triangle PSR)}$
⇒ $\frac{ar(\triangle PQS)}{ar(\triangle PSR)}=\frac{2}{3}$
⇒ $\frac{ar(\triangle PSR)}{ar(\triangle PQR)}=\frac{3}{5}$
⇒ $ar(\triangle PSR)=\frac{3}{5}×ar(\triangle PQR)$
⇒ $ar(\triangle PSR)=\frac{3}{5}×180=108 \, \operatorname{ cm^2}$
Hence, the correct answer is 108.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books