Question : $\frac{(100-1)(100-2)(100-3)....(100-200)}{100\times99\times98...3\times2\times1}$ is equal to:
Option 1: $\frac{100}{99\times98\times97\times...\times3\times2\times1}$
Option 2: $\frac{1}{99\times98\times97\times...\times3\times2\times1}$
Option 3: $0$
Option 4: $\frac{2}{99\times98\times97\times...\times3\times2\times1}$
Correct Answer: $0$
Solution : Given: $\frac{(100-1)(100-2)(100-3)....(100-200)}{100\times99\times98...3\times2\times1}$ ⇒ $\frac{(100-1)(100-2)(100-3).....(100-100).....(100-200)}{100\times99\times98...3\times2\times1}$ This will be equal to zero, as there will be a term in between $(100 – 100)$ equal to zero. Hence, the correct answer is $0$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $(1-\frac{1}{5})(1-\frac{1}{6})(1-\frac{1}{7}).......(1-\frac{1}{100})$ is equal to:
Question : $\sqrt{1\frac{1}{4}×\frac{64}{125}×1.44}$ is equal to:
Question : The value of $1 \frac{2}{5}-\left[3 \frac{3}{4} \div\left\{1 \frac{1}{4} \div \frac{1}{2}\left(1 \frac{1}{2} \times 3 \frac{1}{3} \div 1 \frac{1}{3}\right)\right\}\right]$ is:
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Question : The value of $\frac{1 \frac{1}{2} \div 3 \frac{1}{4}+\frac{1}{2} \div \frac{13}{14}+\frac{1}{5}}{\frac{1}{5} \times 3 \frac{1}{2}-\frac{1}{3} \div 1 \frac{3}{4} \times 3 \frac{1}{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile