Question : $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ is equal to:
Option 1: $2\cos\theta$
Option 2: $2\sin\theta$
Option 3: $2\cot\theta$
Option 4: $2\sec\theta$
Correct Answer: $2\sec\theta$
Solution : Given: $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ = $\sqrt{\frac{(1+\sin\theta)(1+\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}}+\sqrt{\frac{(1-\sin\theta)(1-\sin\theta)}{(1+\sin\theta)(1-\sin\theta)}}$ = $\sqrt{\frac{(1+\sin\theta)(1+\sin\theta)}{(1-\sin^2\theta)}}+\sqrt{\frac{(1-\sin\theta)^2}{(1-\sin^2\theta)}}$ = $\sqrt{\frac{(1+\sin\theta)(1+\sin\theta)}{(cos^2\theta)}}+\sqrt{\frac{(1-\sin\theta)^2}{(cos^2\theta)}}$ = $\frac{(1+\sin\theta)}{\cos\theta}+\frac{(1-\sin\theta)}{\cos\theta}$ = $\frac{2}{\cos\theta}$ = $2 \sec\theta$ Hence, the correct answer is $2\sec\theta$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\sin \theta+\cos \theta=\sqrt{2} \cos \theta$, then find $\frac{\sin \theta-\cos \theta}{\sin \theta}$:
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile