Question : $\cos^4 A-\sin^4 A$ is equal to:
Option 1: $2 \cos^2 A+1$
Option 2: $1-2 \sin ^2 A$
Option 3: $2 \sin^2 A-1$
Option 4: $-\left(2 \sin^2 A+1\right)$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1-2 \sin ^2 A$
Solution : Given: $\cos^4 A-\sin^4 A$ $= (\cos^2A)^2-(\sin ^2A)^2$ $= (\cos^2A-\sin^2 A)(\cos^2 A+\sin^2 A)$ $= (\cos^2A-\sin^2A)×1$ [$\because \cos^2A+\sin^2A=1$] $=(1-\sin^2A-\sin^2A)$ $= 1-2\sin^2A$ Hence, the correct answer is $1-2\sin^2A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Question : The value of expression $4\left(\sin ^6 A+\cos ^6 A\right)-6\left(\sin ^4 A+\cos ^4 A\right)+8$ is:
Question : The given expression is equal to $\frac{\sin^4 A+\cos^4 A}{1-2 \sin^2 A \cos^2 A}$:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile