Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $\operatorname{cosec} \theta$
Option 4: $\sec \theta$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2 \sec \theta$
Solution : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ $=\frac{(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta})(1+\frac {\cos \theta}{\sin \theta}-\frac {1}{\sin \theta})}{(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta})(1-\sin \theta)}$ $=\frac{(\frac{\cos \theta+\sin \theta+1}{\cos \theta})(\frac {\sin \theta+\cos \theta-1}{\sin \theta})}{(\frac{1+\sin \theta}{\cos \theta})(1-\sin \theta)}$ $=\frac{(\cos \theta+\sin \theta+1)(\sin \theta+\cos \theta-1)}{\sin \theta(1-\sin \theta)}$ $=\frac{(\cos \theta+\sin \theta)^2-1}{\sin \theta\cos^2 \theta}$ $=\frac{(\cos ^2\theta+\sin^2 \theta+2\sin \theta\cos \theta-1)}{\sin \theta\cos^2 \theta}$ $=\frac{(1+2\sin \theta\cos \theta-1)}{\sin \theta\cos^2 \theta}$ $=\frac{2\sin \theta\cos \theta}{\sin \theta\cos^2 \theta}$ $=\frac{2}{\cos \theta}$ $=2 \sec \theta$ Hence, the correct answer is $2 \sec \theta$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Which of the following is equal to $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$?
Question : The expression $\frac{\cos ^4 \theta-\sin ^4 \theta+2 \sin ^2 \theta+3}{(\operatorname{cosec} \theta+\cot \theta+1)(\operatorname{cosec} \theta-\cot \theta+1)-2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : Which of the following is equal to $\frac{1}{\tan \theta}+\tan \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile