Question : $\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}}$ is equal to:
Option 1: $3\sqrt{6}$
Option 2: $2\sqrt{6}$
Option 3: $4\sqrt{6}$
Option 4: $2$
Correct Answer: $2$
Solution : Given $\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}}$ Simplifying this expression by factorising the values, $\frac{\sqrt{2\times2\times2\times 3} + \sqrt{2\times2\times2\times3\times3\times3}}{\sqrt{2\times2\times2\times2\times2\times3}}$ = $\frac{\sqrt{4\times6} + \sqrt{6\times36}}{\sqrt{6\times16}}$ = $\frac{2\sqrt{6} + 6\sqrt{6}}{4\sqrt{6}}$ = $\frac{8\sqrt{6}}{4\sqrt{6}}$ = $\frac{8}{4}$ = $2$ Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\frac{\sqrt{24}+\sqrt{216}}{\sqrt{96}}$ is equal to:
Question : $[2\sqrt{{54}}-6\sqrt{{\frac{2}{3}}}-\sqrt{96}]$ is equal to:
Question : $2\sqrt{54}-6\sqrt{\frac{2}{3}}-\sqrt{96}$ is equal to:
Question : Evaluate: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile