Question : $\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\left.\theta \neq \frac{\pi}{2}\right)?$
Option 1: $\frac{1+\cos \theta}{\sin \theta}$
Option 2: $\frac{\tan \theta+1}{\tan \theta-1}$
Option 3: $\frac{\tan \theta-1}{\tan \theta+1}$
Option 4: $\frac{\cos \theta}{1-\sin \theta}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\cos \theta}{1-\sin \theta}$
Solution : Given, $\frac{1+\sin \theta}{\cos \theta}$ Multiplying numerator and denominator by $(1-\sin \theta)$ = $\frac{(1+\sin \theta)\times (1-\sin \theta)}{\cos \theta\times (1-\sin \theta)}$ = $\frac{(1-\sin^2 \theta)}{\cos \theta\times (1-\sin \theta)}$ = $\frac{\cos^2 \theta}{\cos \theta\times (1-\sin \theta)}$ = $\frac{\cos \theta}{1-\sin \theta}$ Hence, the correct answer is $\frac{\cos \theta}{1-\sin \theta}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : What is $\tan \frac{\theta}{2}$?
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : If $\sec \theta+\tan \theta=5, (\theta \neq 0)$, then $\sec \theta$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile