Two matrices can be subtracted only when they are of the same order. If $A$ and $B$ are matrices of order $m \times n$ then their difference will also be a matrix of the same order and in subtraction, corresponding elements of $A$ and $B$ get subtracted. So if
$ \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}, \mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}} \text { Then, } \mathrm{A}-\mathrm{B}=\left[\mathrm{a}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n} \text { for all } \mathrm{i}, \mathrm{j}} $
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile