Question : $\triangle \mathrm {ABC}$ is similar to $\triangle \mathrm{PQR}$ and $\mathrm{PQ}=10 \mathrm{~cm}$. If the area of $\triangle \mathrm{ABC}$ is $32 \mathrm{~cm}^2$ and the area of $\triangle \mathrm{PQR}$ is $50 \mathrm{~cm}^2$, then the length of $A B$ (in $\mathrm{cm}$ ) is equal to:
Option 1: 10
Option 2: 4
Option 3: 6
Option 4: 8
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 8
Solution : If $\triangle \mathrm{A B C}$ is similar to $\triangle \mathrm{PQR}$ ⇒ $\frac{\text{Ares of triangle ABC}}{AB^2}=\frac{\text{Area of triangle PQR}}{PQ^2}$ ⇒ $\frac{32}{AB^2}=\frac{50}{10^2}$ ⇒ $AB^2=\frac{32}{50}\times 100$ ⇒ $AB^2=64$ cm ⇒ $AB=\sqrt{64}=8$ cm Hence, the correct answer is 8 cm.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : $\triangle$ABC is similar to $\triangle$PQR. The length of AB is 16 cm and the length of the corresponding side PQ is 9 cm. If the area of $\triangle$ABC is 1024 sq. cm, what is the area of $\triangle$PQR?
Question : $\triangle$ABC is similar to $\triangle$PQR. If the ratio of the perimeter of $\triangle$ABC and the perimeter of $\triangle$PQR is 24 : 16 and PQ = 4.8 cm, then the length (in cm) of AB is:
Question : $\triangle P Q R$ is similar to $\triangle \mathrm{UVW}$. Perimeters of $\triangle \mathrm{PQR}$ and $\Delta \mathrm{UVW}$ are 120 cm and 240 cm respectively. If PQ = 30 cm, then what is the length of UV?
Question : $\triangle \mathrm{ABC}$ is an isosceles triangle with $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC}$. If $\mathrm{AC}=12 \mathrm{~cm}$, then the length of $\mathrm{BC}$ (in $\mathrm{cm}$) is equal to:
Question : The area of two similar triangles TUV and PQR are $18 \ \text{cm}^2$ and $32 \ \text{cm}^2$, respectively. If $TU=6\ \text{cm}$, then PQ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile