Jnu syllabus of chemistry for m. SC. Entrance exam?
MSc Chemistry from JAIPUR NATIONAL UNIVERSITY :
Amongst the Basic Sciences, Chemistry deals with the study of composition, properties, constitution, and mutual interaction of different kinds of matter. The role of chemistry in modern society can be seen in diverse fields such as chemicals, petroleum products, pharmaceuticals, polymers and plastics and biotechnology. It also plays a role in cleaning up environment, improving methods for producing, processing food, and making automobiles softer and more fuel efficient. Chemists can seek jobs in industrial and governments sectors, and in research and development organizations. The Department of chemistry also boasts of a stand-alone wet research laboratory for water treatment, organic synthesis and material processing besides having its own instrumentation laboratories.
Duration: 2 Years
Eligibility: Minimum 50 % aggregate in Graduation in any stream of Basic Sciences with Chemistry as one of the compulsory subject.
Selection Procedure: Merit and Interview
Syllabus for JNU M.Sc. Chemistry Entrance Test is of objective type-
PHYSICAL CHEMISTRY
Basic Mathematical Concepts : Functions; maxima and minima; integrals; ordinary differential equations; vectors and matrices; determinants; elementary statistics and probability theory.
Atomic and Molecular Structure: Fundamental particles; Bohr’s theory of hydrogen-like atom; wave-particle duality; uncertainty principle; Schrödinger’s wave equation; quantum numbers; shapes of orbitals; Hund’s rule and Pauli’s exclusion principle; electronic configuration of simple homonuclear diatomic molecules.
Theory of Gases : Equation of state for ideal and non-ideal (van der Waals) gases; Kinetic theory of gases; Maxwell-Boltzmann distribution law; equipartition of energy. Solid state: Crystals and crystal systems; X-rays; NaCl and KCl structures; close packing; atomic and ionic radii; radius ratio rules; lattice energy; Born-Haber cycle; isomorphism; heat capacity of solids.
Chemical Thermodynamics : Reversible and irreversible processes; first law and its application to ideal and nonideal gases; thermochemistry; second law; entropy and free energy; criteria for spontaneity.
Chemical and Phase Equilibria : Law of mass action; Kp, Kc, Kx and Kn; effect of temperature on K; ionic equilibria in solutions; pH and buffer solutions; hydrolysis; solubility product; phase equilibria–phase rule and its application to one-component and two-component systems; colligative properties.
Electrochemistry : Conductance and its applications; transport number; galvanic cells; EMF and free energy; concentration cells with and without transport; polarography; concentration cells with and without transport; Debey-Huckel-Onsagar theory of strong electrolytes.
Chemical Kinetics : Reactions of various order; Arrhenius equation; collision theory; transition state theory; chain reactions – normal and branched; enzyme kinetics; photochemical processes; catalysis.
Adsorption : Gibbs adsorption equation; adsorption isotherm; types of adsorption; surface area of adsorbents; surface films on liquids.
Spectroscopy : Beer-Lambert law; fundamental concepts of rotational, vibrational, electronic and magnetic resonance spectroscopy.
ORGANIC CHEMISTRY
Basic Concepts in Organic Chemistry and Stereochemistry : Electronic effects; resonance, inductive, hyperconjugation, aromaticity, tautomerism; organic acids and bases; optical isomerism in compounds with and without any stereocenters (allenes, biphenyls); conformation of acyclic systems (substituted ethane/n-propane/n-butane) and cyclic systems (mono- and di-substituted cyclohexanes).
Organic Reaction Mechanism and Synthetic Applications : Chemistry of reactive intermediates (carbocations, carbanions, free radicals, carbenes, nitrenes, benzynes); Hofmann-Curtius-Lossen rearrangement, Wolff rearrangement, Simmons-Smith reaction, Reimer-Tiemann reaction, Michael reaction, Darzens reaction, Wittig reaction and McMurry reaction; Pinacol-pinacolone, Favorskii, benzilic acid rearrangement, dienone-phenol rearrangement, Baeyer-Villeger reaction; oxidation and reduction reactions in organic chemistry; organometallic reagents in organic synthesis (Grignard, organolithium and organocopper); Diels-Alder, electrocyclic and sigmatropic reactions; functional group inter-conversions and structural problems using chemical reactions.
Spectroscopic Analysis : Identification of functional groups by UV, IR and 1H NMR spectroscopic techniques as tools for structural elucidation.
Natural Products Chemistry : Chemistry of alkaloids, steroids, terpenes, carbohydrates, amino acids, peptides and nucleic acids.
Aromatic and Heterocyclic Chemistry : Monocyclic, bicyclic and tricyclic aromatic hydrocarbons, and monocyclic compounds with one hetero atom: synthesis, reactivity and properties.
INORGANIC CHEMISTRY
Periodic Table : Periodic classification of elements and periodicity in properties; general methods of isolation and purification of elements.
Chemical Bonding and Shapes of Compounds : Types of bonding; VSEPR theory and shapes of molecules; hybridization; dipole moment; ionic solids; structure of NaCl, CsCl, diamond and graphite; lattice energy. Concepts of Acids and Bases: Bronsted and Lewis acids and bases; Gas phase versus solution phase acidity; solvent levelling effects; hardness and softness.
Oxidation and Reduction : Redox potentials; Nernst equation; influence of complex formation; precipitation; change of pH and concentration on redox potentials; analysis of redox cycles; redox stability in water; disproportionation/ comproportionation.
Main Group Elements (s and p blocks) : General concepts on group relationships and gradation in properties; structure of electron deficient compounds involving main group elements.
Transition Metals (d block) : Characteristics of 3d elements; oxide, hydroxide and salts of first row metals; coordination complexes: structure, isomerism, reaction mechanism and electronic spectra; VB, MO and Crystal Field theoretical approaches for structure, color and magnetic properties of metal complexes; organometallic compounds having ligands with back bonding capabilities such as metal carbonyls, carbenes, nitrosyls and metallocenes; homogenous catalysis.
Bioinorganic Chemistry : Essentials and trace elements of life; basic reactions in the biological systems and the role of metal ions, especially Fe2+, Fe3+, Cu2+ and Zn 2+ ; structure and function of hemoglobin and myoglobin and carbonic anhydrase.
Instrumental Methods of Analysis : Basic principles; instrumentations and simple applications of conductometry, potentiometry and UV-vis spectrophotometry.
Analytical Chemistry : Principles of qualitative and quantitative analysis; acid-base, oxidation-reduction and complexometric titrations using EDTA; precipitation reactions; use of indicators; use of organic reagents in inorganic analysis.