Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Option 1: $1$
Option 2: $1-\sqrt{2}$
Option 3: $1+\sqrt{2}$
Option 4: $\sqrt{2}-1$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1+\sqrt{2}$
Solution : The value of $\angle C = 45°$ $\sec C = \sec 45° = \sqrt{2}$ $\sin C = \sin 45° = \frac{1}{\sqrt{2}}$ Now, $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$ $=\sqrt{2}+ \frac{1}{\sqrt{2}} \times \sqrt{2}$ $= \sqrt{2}+1$ Hence, the correct answer is $1+\sqrt{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In right angled triangle ABC, if $\angle \mathrm{A}=30^{\circ}$, find the value of $3 \sin \mathrm{A}-4 \sin ^3 \mathrm{~A}$.
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : In a $\triangle ABC$, if $2\angle A=3\angle B=6\angle C$, then the value of $\angle B$ is:
Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Question : $\triangle \mathrm{EFG}$ is a right angled triangle. $\angle \mathrm{F}=90°$, $\mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{FG}=15 \mathrm{~cm}$. What is the value of cosec $\mathrm{G}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile