Question : Let ABC be a triangle right-angled at B. If $\tan A = \frac{12}{5}$, then find the values of $\operatorname{cosec A}$ and $\sec A$, respectively.
Option 1: $\frac{13}{10}, \frac{5}{13}$
Option 2: $\frac{13}{12},\frac{13}{5}$
Option 3: $\frac{10}{13}, \frac{5}{13}$
Option 4: $\frac{12}{13}, \frac{5}{13}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13}{12},\frac{13}{5}$
Solution : Given, $\tan A=\frac{12}{5}$ $\tan A = \frac{\text{perpendicular}}{\text{base}}$ Using pythagoras theorem, $\small\text{Hypotenuse}^2=\text{Base}^2+\text{Perpendicular}^2$ ⇒ $h^2=5^2+12^2$ ⇒ $h^2=25+144$ ⇒ $h^2=169$ ⇒ $h=13$ $\therefore$ $\operatorname{cosec A}=\frac{\text{Hypotenuse}}{\text{Perpendicular}}=\frac{13}{12}$ And, $\sec A=\frac{\text{Hypotenuse}}{\text{Base}}=\frac{13}{5}$ Hence, the correct answer is $\frac{13}{12},\frac{13}{5}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If in a right-angled $\triangle P Q R$, $\tan Q=\frac{5}{12}$, then what is the value of $\cos Q$?
Question : $\triangle PQR$ is a right-angled triangle. $\angle Q = 90^\circ$, PQ = 12 cm, and QR = 5 cm. What is the value of $\operatorname{cosec}P+\sec R$?
Question : $\triangle PQR$ is right angled at Q. If PQ = 12 cm and PR = 13 cm, find $\tan P+\cot R$.
Question : $\triangle$XYZ is right angled at Y. If $\cos X=\frac{3}{5}$, then what is the value of $\operatorname{cosec}Z$?
Question : If $\sec \theta+\tan \theta=5$, then $\operatorname{sin} \theta=$________.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile