Question : Let $x=\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$ and $y=\frac{1}{x}$, then the value of $3x^{2}-5xy+3y^{2}$ is:
Option 1: 1717
Option 2: 1177
Option 3: 1771
Option 4: 1171
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1717
Solution : The value of $x=\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}} $ After rationalizing this, we get, $ =\frac{(\sqrt{13}+\sqrt{11})(\sqrt{13}+\sqrt{11})}{(\sqrt{13}-\sqrt{11})(\sqrt{13}+\sqrt{11})} $ $=\frac{(13+2\sqrt{143}+11)}{(13-11)} =\frac{24+2\sqrt{143}}{2} =12+\sqrt{143}$ The value of $y=\frac{1}{x} =\frac{1}{12+\sqrt{143}} $ After rationalizing this, we get, $ =\frac{(12-\sqrt{143})}{(12+\sqrt{143})(12-\sqrt{143})} =\frac{(12-\sqrt{143})}{1} = 12-\sqrt{143}$ $⇒3x^{2}-5xy+3y^{2}$ $=3(12+\sqrt{143})^{2}-5(12+\sqrt{143})(12-\sqrt{143})+3(12-\sqrt{143})^{2}$ $=3(144+24\sqrt{143}+143)-5(144-143)+3(144-24\sqrt{143}+143)$ $=3(287+24\sqrt{143})-5+3(287-24\sqrt{143})$ $=861+72\sqrt{143}-5+861-72\sqrt{143}$ $=1717$ Therefore, the value of $3x^{2}-5xy+3y^{2}$ is 1717. Hence, the correct answer is 1717.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x+ \frac{1}{x} =\sqrt{13}$, then $\frac{3x}{{x}^{2} -1}$ equals to:
Question : If $y+\frac{1}{y}=11$, then the value of $y^3-\frac{1}{y^3}$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$?
Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile