Question : Let $x=\frac{5 \frac{3}{4}-\frac{3}{7} \times 15 \frac{3}{4}+2 \frac{2}{35} \div 1 \frac{11}{25}}{\frac{3}{4} \div 5 \frac{1}{4}+5 \frac{3}{5} \div 3 \frac{4}{15}}$. When $y$ is added to $x$, the result is $\frac{7}{13}$. What is the value of $y$?
Option 1: $\frac{1}{13}$
Option 2: $\frac{9}{13}$
Option 3: $\frac{2}{13}$
Option 4: $\frac{4}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{13}$
Solution : $x=\frac{5 \frac{3}{4}-\frac{3}{7} \times 15 \frac{3}{4}+2 \frac{2}{35} \div 1 \frac{11}{25}}{\frac{3}{4} \div 5 \frac{1}{4}+5 \frac{3}{5} \div 3 \frac{4}{15}}$ $⇒x=\frac{\frac{23}{4}-\frac{3}{7} \times \frac{63}{4}+\frac{72}{35} \div \frac{36}{25}}{\frac{3}{4} \div \frac{21}{4}+\frac{28}{5} \div \frac{49}{15}}$ $⇒x=\frac{\frac{23}{4}-\frac{3}{7} \times \frac{63}{4}+\frac{72}{35} \times \frac{25}{36}}{\frac{3}{4} \times \frac{4}{21} +\frac{28}{5} \times \frac{15}{49}}$ $⇒x=\frac{\frac{23}{4}- \frac{27}{4}+\frac{10}{7}}{\frac{1}{7}+\frac{12}{7}}$ $⇒x=\frac{\frac{3}{7}}{\frac{13}{7}}$ $⇒x=\frac{3}{13}$ Given that $x + y = \frac{7}{13}$, $⇒y = \frac{7}{13} - x = \frac{7}{13} - \frac{3}{13} = \frac{4}{13}$ Hence, the correct answer is $ \frac{4}{13}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : What is the value of $\frac{X}{Y}$ if $\frac{X-5 Y}{X+5 Y}=\frac{7}{13}$
Question : The value of $1 \frac{3}{4}+1 \frac{5}{7} \div 2 \frac{3}{7} \times 2 \frac{3}{7}=$?
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : The value of $15 \div 8-\frac{5}{4}$ of $\left(\frac{8}{3} \times \frac{9}{16}\right)+\left(\frac{9}{8} \times \frac{3}{4}\right)-\left(\frac{5}{32} \div \frac{5}{7}\right)+\frac{3}{8}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile