1624 Views

Lim x tending to 0, sin root x divided by root of sin x


Yoganathan 17th Jul, 2020
Answer (1)
Rishi Garg 18th Jul, 2020

Lim_(x->0)(sin(\root(x))/(\root(sinx))) = Lim_(x->0) (sin(\root(x)) / (\root(sinx))) * (\root(x))/(\root(x))

Using lim_x->0 (sinx/x) = 1, we get

= Lim_(x->0) (sin(\root(x)) / (\root(x))

Now, if x is tending towards 0 from right side i.e., 0+ then the limit will be 1 using [ lim_x->0 (sinx/x) = 1] and if x is tending towards 0 from left side i.e., 0- then the limit is not defined as sin(\root(x)) will be not-defined.

So, the limit to the given function does not exist.

Hope it helps.

UPES B.Tech Admissions 2026
Apply
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
UPES Integrated LLB Admission...
Apply
Ranked #18 amongst Institutions in India by NIRF | Ranked #1 in India for Academic Reputation by QS Rankings | 16 LPA Highest CTC
Great Lakes Institute of Mana...
Apply
Admissions Open | Globally Recognized by AACSB (US) & AMBA (UK) | 17.8 LPA Avg. CTC for PGPM 2025
Nirma University Law Admissio...
Apply
Grade 'A+' accredited by NAAC | Ranked 33rd by NIRF 2025
UPES M.Tech Admissions 2026
Apply
Ranked #45 Among Universities in India by NIRF | 1950+ Students Placed 91% Placement, 800+ Recruiters
UPES | BBA Admissions 2026
Apply
#36 in NIRF, NAAC ‘A’ Grade | 100% Placement, up to 30% meritorious scholarships
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books