Question : O is the incentre of the $\triangle \mathrm{PQR}$. If $\angle \mathrm{POR}=120°$, then what is the $\triangle \mathrm{PQR}$?
Option 1: 45°
Option 2: 60°
Option 3: 55°
Option 4: 48°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 60°
Solution : Given, $\angle POR = 120°$ We know, Angle at incentre = $90° + \frac{\text{vertex angle}}{2}$ ⇒ $90° + \frac{\angle PQR}{2} = 120°$ ⇒ $\frac{\angle PQR}{2} = 120° - 90°$ ⇒ $\frac{\angle PQR}{2} = 30°$ ⇒ $\angle PQR=60°$ Hence, the correct answer is 60°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : In $\triangle \mathrm{PQR}, \angle \mathrm{P}=46^{\circ}$ and $\angle \mathrm{R}=64^{\circ}$.If $\triangle \mathrm{PQR}$ is similar to $\triangle \mathrm{ABC}$ and in correspondence, then what is the value of $\angle \mathrm{B}$?
Question : I is the incentre of the $\triangle$XYZ. If $\angle$YIZ = 115°, then what is the $\angle$YXZ?
Question : M is the incentre of the $\triangle $XYZ. If $\angle $YXZ + $\angle $YMZ = 150°, then what is the value of $\angle $YXZ?
Question : In $\triangle \mathrm{STU}, \mathrm{SX}$ is the median on $\mathrm{TU}$. If $\mathrm{SX}=\mathrm{TX}$, then what is the value of $\angle \mathrm{TSU}$?
Question : In a triangle $\triangle \mathrm{PQR}$, the bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{R}$ meet at a point $\mathrm{M}$ inside the triangle. If the measurement of $\angle P M R=127^{\circ}$, then the measurement of $\angle Q$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile