Question : On the marked price of INR 1,250 of an article, three successive discounts of 5%, 15%, and 20% were offered, The amount (in INR) of discount received by a customer is:
Option 1: 442.50
Option 2: 950.25
Option 3: 450
Option 4: 807.50
Correct Answer: 442.50
Solution : Total Discount = 1 − (1 − D 1 ) × (1 − D 2 ) × (1 − D 3 ) where D 1 , D 2 , and D 3 are discount percentages (decimal values). Here, D 1 = $\frac{5}{100}$ = 0.05 D 2 = $\frac{15}{100}$ = 0.15 D 3 = $\frac{20}{100}$ = 0.20 So, Total Discount = 1 − (1 − 0.05) × (1− 0.15) × (1 − 0.20 ) ⇒ Total Discount = 1− (0.95 × 0.85 × 0.80) ⇒ Total Discount = 0.354 Discount Amount = Total Discount × Marked Price = 0.354 × 1250 = INR 442.50 Hence, the correct answer is 442.50.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : On the marked price of INR 1,250 of an article, three successive discounts of 5%, 15%, and 20% are offered. What will be the selling price (in INR) after all discounts?
Question : On the marked price of an article, the sum of selling prices with a discount of 35% and two successive discounts of 20% and 15%, is INR 1,995. The marked price of the article (in INR) is:
Question : On a marked price, the difference of selling prices with a discount of 35% and two successive discounts of 20% and 15%, is INR 504. The marked price of the article (in INR) is:
Question : If two successive discounts, each of 20% on the marked price of an article, are equal to a single discount of INR 331.20, then the marked price (in INR) of the article is:
Question : Two successive discounts, each of $x\%$ on the marked price of an article, are equal to a single discount of INR 331.20. If the marked price of the article is INR 920, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile