1 View

Question : PQ is a chord of length 8 cm of a circle with centre O and radius 5 cm. The tangents at P and Q intersect at a point T. The length of TP is:

Option 1: $\frac{20}{3}\ \text{cm}$

Option 2: $\frac{21}{4}\ \text{cm}$

Option 3: $\frac{10}{3}\ \text{cm}$

Option 4: $\frac{15}{4}\ \text{cm}$


Team Careers360 25th Jan, 2024
Answer (1)
Team Careers360 26th Jan, 2024

Correct Answer: $\frac{20}{3}\ \text{cm}$


Solution :
Join OP and OT.
Let OT intersect PQ at a point R.
Then, TP = TQ (The lengths of tangents drawn from an external point to a circle are equal) and $\angle$PTR = $\angle$QTR.
⇒ TR $\perp$ PQ and TR bisect PQ.
⇒ PR = RQ = 4 cm
OP = 5 cm
So, OR 2 = OP 2 – PR 2 = $\sqrt{5^2-4^2}=\sqrt{9}=3$ cm
Let TP = $x$ cm
and TR = $y$ cm
From right ΔTRP, we get,
TP 2 = TR 2 + PR 2
⇒ $x$ 2 = $y$ 2 + 16
⇒ $x$ 2 − $y$ 2 = 16-------------------------(i)
From right ΔOPT, we get
TP 2 + OP 2 = OT 2
⇒ $x$ 2 + 5 2 = ($y$ + 3) 2 [$\because$ OT 2 = (OR + RT) 2 ]
⇒ $x$ 2 − $y$ 2 = 6$y$ − 16------------------(ii)
From (i) and (ii), we get,
6$y$ − 16 = 16
⇒ 6$y$ = 32
⇒ $y$ = $\frac{16}{3}$
Putting the value of $y$ in equation (i), we get,
$x$ 2 $=16 + (\frac{16}{3})^2=16+\frac{256}{9}=\frac{400}{9}=\frac{20}{3}\ \text{cm}$
Hence, the correct answer is $\frac{20}{3}\ \text{cm}$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books