334 Views

show that the number of equivalence relation in the set(1,2,3) containing (1,2) and (2,1) is two


sanya kamboj 14th Mar, 2020
Answer (1)
Mohit Sinha 17th Mar, 2020

A relation is an equivalence relation if it is reflexive, transitive and symmetric.

Any equivalence relation RR on {1,2,3}{1,2,3}

  1. must contain (1,1),(2,2),(3,3)(1,1),(2,2),(3,3)
  2. must satisfy: if (x,y)∈R(x,y)∈R then (y,x)∈R(y,x)∈R
  3. must satisfy: if (x,y)∈R,(y,z)∈R(x,y)∈R,(y,z)∈R then (x,z)∈R(x,z)∈R

Since (1,1),(2,2),(3,3)(1,1),(2,2),(3,3) must be there is RR , we now need to look at the remaining pairs (1,2),(2,1),(2,3),(3,2),(1,3),(3,1)(1,2),(2,1),(2,3),(3,2),(1,3),(3,1) . By symmetry, we just need to count the number of ways in which we can use the pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) to construct equivalence relations. This is because if (1,2)(1,2) is in the relation then (2,1)(2,1) must be there in the relation.

B.Tech/B.Arch Admissions OPEN

Apply to VIT - VITEEE 2026

Notice that the relation will be an equivalence relation if we use none of these pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) . There is only one such relation:

  • {(1,1),(2,2),(3,3)}{(1,1),(2,2),(3,3)}

or we use exactly one pair from (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) . In this case, we can have three possible equivalence relations:

  • {(1,1),(2,2),(3,3),(1,2),(2,1)}{(1,1),(2,2),(3,3),(1,2),(2,1)}
  • {(1,1),(2,2),(3,3),(1,3),(3,1)}{(1,1),(2,2),(3,3),(1,3),(3,1)}
  • {(1,1),(2,2),(3,3),(2,3),(3,2)}{(1,1),(2,2),(3,3),(2,3),(3,2)}

or when we use all all three pairs (1,2),(2,3),(1,3)(1,2),(2,3),(1,3) to get the following relation:

  • {(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}

We can’t pick just two pairs from the set {(1,2),(2,3),(1,3)}{(1,2),(2,3),(1,3)} and form an equivalence relation because such a relation would violate transitivity. For example, if we pick only (1,2)(1,2) and (1,3)(1,3) , then by symmetry we must also have (3,1)(3,1) in the relation. Now by transitivity (3,2)(3,2) must be there, and hence (2,3)(2,3) should be there by symmetry.

Therefore, we have 5 equivalence relations on the set {1,2,3}{1,2,3} . Out of those there are only two of them that contains (1,2)(1,2) and (2,1)(2,1) .

  1. {(1,1),(2,2),(3,3),(1,2),(2,1)}{(1,1),(2,2),(3,3),(1,2),(2,1)}
  2. {(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}


JEE Main 2026 Rank Predictor

Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.

Try Now

Know More About

Amity University-Noida B.Tech...
Apply
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
BML Munjal University | B.Tec...
Apply
A Hero Group Initiative | Up to 100% Scholarships | Highest CTC 32.99 LPA | Average CTC 8.45 LPA | Accepts JEE Score | Applications Closing Soon!
SRM University A.P UG Admissi...
Apply
UG Admissions Open 2026 | Highest CTC 52 LPA | Average CTC 9.09 LPA | 60+ Collaborations with the world's best Universities
Amrita University B.Tech 2026
Apply
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Application Deadline: 15th Jan
BITSAT 2026
Apply
Institute of Eminence (IOE) by Govt. of India | Merit Based Scholarships | Ranked #11 by NIRF | Last Date to Apply: 16th Mar'26
NMIMS-CET 2026
Apply
Gateway to B.Tech, B.Tech + MBA Tech.,B.Pharma + MBA (Pharma Tech.) @ NMIMS (Deemed to be University)
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books