Question : Simplify $(3 x+2 y)^2-(3 x-2 y)^2$.
Option 1: $12 x y$
Option 2: $18 x^2-8 y^2$
Option 3: $24 xy$
Option 4: $9x^2-4y^2$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $24 xy$
Solution : $(3x+2y)^2-(3x−2y)^2$ $=[(3x)^2+(2y)^2+2(3x)(2y)]-[(3x)^2+(2y)^2−2(3x)(2y)]$ $=[9x^2+4y^2+12xy]-[9x^2+4y^2−12xy]$ $=9x^2+4y^2+12xy-9x^2-4y^2+12xy$ $=24xy$ Hence, the correct answer is $24xy$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given expression $\frac{(x^3-y^3)(x+y)}{x^2+x y+y^2}$.
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : If $xy=48$ and $x^2+y^2=100$, then $(x+y)$ is:
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile