Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.
Option 1: $1-\tan ^2 \theta$
Option 2: $\tan ^2 \theta-1$
Option 3: $\cot ^2 \theta-1$
Option 4: $1-\cot ^2 \theta$
Correct Answer: $\cot ^2 \theta-1$
Solution : $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$ $= \frac{(\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)}{\sin ^2 \theta}$ $=\frac{\cos^2 \theta - \sin^2 \theta}{\sin ^2 \theta}$ [As $\cos^2 \theta + \sin^2 \theta = 1$] $=\frac{\cos^2 \theta}{\sin ^2 \theta}-\frac{\sin^2 \theta}{\sin^2 \theta}$ $=\cot ^2 \theta-1$ Hence, the correct answer is $\cot ^2 \theta-1$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Simplify. $\frac{\sin8\theta \cos\theta - \sin6\theta \cos3\theta}{\cos2\theta \cos\theta - \sin3\theta \sin4\theta}$
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : If $\cos ^2 \theta-\sin ^2 \theta=\tan ^2 \phi$, then which of the following is true?
Question : If $\frac{\tan\theta +\cot\theta }{\tan\theta -\cot\theta }=2, (0\leq \theta \leq 90^{0})$, then the value of $\sin\theta$ is:
Question : $\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile